Direct Product Decompositions of Infinitely Distributive Lattices
نویسنده
چکیده
Let α be an infinite cardinal. Let Tα be the class of all lattices which are conditionally α-complete and infinitely distributive. We denote by T ′ σ the class of all lattices X such that X is infinitely distributive, σ-complete and has the least element. In this paper we deal with direct factors of lattices belonging to Tα. As an application, we prove a result of Cantor-Bernstein type for lattices belonging to the class T ′ σ .
منابع مشابه
Distributive lattices with strong endomorphism kernel property as direct sums
Unbounded distributive lattices which have strong endomorphism kernel property (SEKP) introduced by Blyth and Silva in [3] were fully characterized in [11] using Priestley duality (see Theorem 2.8}). We shall determine the structure of special elements (which are introduced after Theorem 2.8 under the name strong elements) and show that these lattices can be considered as a direct product of ...
متن کاملDirect Product Decompositions of Lattices , Closures andRelation
In this paper we study the direct product decompositions of closure operations and lattices of closed sets. We characterize the direct product decompositions of lattices of closed sets in terms of closure operations, and nd those decompositions of lattices which correspond to the decompositions of closures. If a closure on a nite set is represented by its implication base (i.e. a binary relatio...
متن کاملDirect product decompositions of lattices, closures and relation schemes
In this paper we study direct product decompositions of closure operations and lattices of closed sets. We characterize direct product decompositions of lattices of closed sets in terms of closure operations, and find those decompositions of lattices which correspond to the decompositions of closures. If a closure on a finite set is represented by its implication base (i.e. a binary relation on...
متن کاملRadical Classes of Distributive Lattices Having the Least Element
Let D be the system of all distributive lattices and let D0 be the system of all L ∈ D such that L possesses the least element. Further, let D1 be the system of all infinitely distributive lattices belonging to D0. In the present paper we investigate the radical classes of the systems D, D0 and D1.
متن کاملDiameter of Zero Divisor Graphs of Finite Direct Product of Lattices
In this paper, we verify the diameter of zero divisor graphs with respect to direct product. Keywords—Atomic lattice, complement of graph, diameter, direct product of lattices, 0-distributive lattice, girth, product of graphs, prime ideal, zero divisor graph.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002